segun krause
dietas para la diabetes
dieta sin carbohidratos
dieta para la diabetes type 2
dieta para la diabetes type 2 y sida
dieta para la diabetes tipo 1
dietas para la diabetes tipo 1 y sida
dietas para la diabetes tipo 1 y sida
dietas para la diabetes tipo 2
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dieta para la diabetes tipo 2
dietas para la diabetes tipo 2 y sida
dieta para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 y sida
dietas para la diabetes tipo 2 01e38acffe
The estimated daily dietary intake of vitamin K in our diet is quite small (20-60 micrograms). However, it has been suggested that a micronutrient-rich diet, rich in vitamin K may protect against various types of cancer.
Dehydrocholic acid and chenodeoxycholic acid are primarily made by the colonic bacteria and have been used in many clinical trials as inducers of bile acid synthesis.
In animals, high levels of preformed vitamin K exist in the liver and the plasma and the vitamin K metabolites, phylloquinone and menaquinone, are found in the intestine.
Vitamin K is required for the synthesis of two important hemostatic factors, the anticoagulant, protein-C and the
second is the activation of prothrombin to thrombin which is required for the formation of blood clots.
Protein-C is produced exclusively by the liver and its synthesis is regulated by heparin which is a known inhibitor of protein-C activation.
Although vitamin K is required for the synthesis of protein-C, the amount required for this purpose is too small to account for the amount of protein-C required to perform its hemostatic function.
Vitamin K deficiency can result in coagulation abnormalities and bleeding. Normally, vitamin K is needed to maintain the level of coagulation factors (proteins) in the circulation.
Although vitamin K is required for the synthesis of a number of coagulation factors, only those involving vitamin K 1,2 epoxide are activated by vitamin K.
Table 1. Vitamin K-dependent proteins Function/role Source Protein-C/gamma-carboxyglutamate protein (GC) Plasma The function of protein-C in the circulation is to prevent excessive activation of the clotting cascade at the site of vascular injury. It is synthesised by hepatocytes and activated by factor VIIa.
Prothrombin/fibrinopeptide A (FPA) Synthesis of thrombin production in the liver
Bikunin Serpin F protein (FSF) Protease inhibitor in the blood, found in high concentration in liver
Protein Z Serpin Z (SPZ) Serine protease inhibitor, found in plasma as well as in the liver
Stinger Protease inhibitor, found in the pancreas
Coag
Related links:
Comments